Общие информационные материалыКаталог материалов: Арамидные материалыТканиСпециальная продукция
|
На основании документа Коллегии Военно-промышленной комиссии
Министерства промышленности и торговли Российской Федерации
АРАМИД. Структура и механические свойства волокнаВ середине 60-х годов фирма Дюпон производила волокна из полиамидов и полиэфиров, которые составляли основную номенклатуру синтетических волокон. Однако, для достижения максимальной жесткости, высокой прочности и большого первоначального модуля полимерные молекулы имели конфигурацию гибких цепей, хотя и кристаллизовались в довольно хорошо ориентированные системы. В 1965 году ученые фирмы Дюпон разработали новый метод производства почти совершенной полимерной вытянутой цепи. Полимер полипарабензамида был получен в форме жидкого кристаллического раствора, благодаря простой повторяемости молекулярных структур. Ключевое структурное требование к основе состояло в том, что ориентированные в пара-положении бензольные кольца формировались в палочкообразные молекулярные структуры. Эта разработка в дальнейшем воплотилась в создании волокна KEVLAR®. Для того чтобы проиллюстрировать различия между жидкокристаллическими жесткоцепными и гибкоцепными полимерами, получаемыми в растворе, рассмотрим схемы, представленные на рис. 1. Рис. 1. Различие в поведении во время формования волокна между гибко- и жесткоцепными полимерами Из рисунка видно, что для гибкоцепных полимеров в разбавленных растворах характерно случайное распределение цепей, затем, по мере концентрирования раствора, цепные клубки хорошо агрегируются, и при вытяжке расплава происходит ориентация цепей, которая может быть достаточно совершенной, но все равно не бывает абсолютной. Если рассматривать жесткоцепные молекулы, такие как полипарабензамид, здесь существуют палочкообразные молекулы, они представляют из себя хорошо сформированные ориентированные цепи уже в разбавленном растворе, при высокой концентрации их форма не меняется. Затем, при наложении на раствор сдвиговых напряжений, формируется хорошо ориентированная молекулярная структура, которая представлена на рис. 2. Рис. 2. Цилиндрическая структура волокна, радиально сложенного из плоскостей, связанных водородными связями Из рисунка видно, что связанные водородными связями по амидным группам цепи уложены в хорошую плоскость, а затем эти плоскости собираются в пачки и образуют палочкообразную структуру. Фактически жесткоцепная структура полимерной молекулы приводит к получению совершенной ориентации уже и в материалах в форме волокна. Рис. 3. Типовая схема установки для пропитки и высокотемпературной вытяжки волокна KEVLAR® Именно на этой структурной основе при формировании таких надмолекулярных структур фирма Дюпон получила возможность создать технологию волокна из полипарафенилентерефталамида, которое было введено в ассортимент как высокопрочное арамидное волокно KEVLAR® в 1971 году. На схеме рис. 3 видно, что исходное сырое волокно подается сначала на предварительное покрытие, потом сушится в печи, затем на него наносится внешнее покрытие, после чего происходит сушка с одновременной вытяжкой. В зависимости от технологических условий вытяжки возможно получение двух основных разновидностей волокна KEVLAR® - либо материал с большим модулем упругости и меньшим относительным удлинением, либо материал с большим относительным удлинением и меньшим модулем упругости. Эти материалы получили торговые марки KEVLAR® 29 и KEVLAR® 49. В таблице 1 представлены все виды свойств этих двух видов волокон. Как уже отмечалось, основное различие составляют величины модуля упругости и относительного удлинения при разрыве. KEVLAR® 29 имеет удлинение при разрыве 3,6 % против 2,4% для KEVLAR® 49, а по величине модуля упругости KEVLAR® 49 почти на 30% превосходит KEVLAR® 29. Остальные свойства будут в дальнейшем обсуждаться более подробно.
Ассортимент волокон в ходе развития технологического процесса также расширялся, и в настоящее время он представлен четырьмя типами, имеющими другие условные наименования. Прежде всего, это Кевлар тип 956, который представляет собой KEVLAR® 29, который приспособлен, главным образом, для армирования полимерных материалов, и обладает хорошей комбинацией высокой прочности, модуля, при малом весе, жесткости и долговечности. Уникальный баланс свойств Кевлара 956 делает его прекрасным армирующим агентом, например, для труб из сшитого полиэтилена, а также для резинотехнических изделий, таких как приводные ремни, конвейерные ленты и др. Кевлар тип 956Е, или Кевлар 119, характеризуется очень высокими долговременными свойствами и высокими усталостными свойствами, которые необходимы, когда нити Кевлар используются для армирования трансмиссионных ремней. Он имеет хорошие температурные характеристики, высокое удлинение и низкий модуль, а также большую жесткость по сравнению с Кевларом 956. KEVLAR® 49 в настоящее время представлен волокном Кевлар 965, он также имеет высокую прочность, равную прочности Кевлара 956, но более высокий модуль и меньшее удлинение. Он хорошо подходит для приводных ремней, где требуется высокомодульный армирующий элемент. Табл. 1. Структура и механические свойства арамидного волокна, на примере типовых свойств волокон KEVLAR® 29 и 49 фирмы Дюпон
Примечание: В этой таблице отражены данные, наиболее часто наблюдаемые для данного типа и текса нити, они не являются частью спецификации. Свойства нити изменяются в зависимости от типа и текса. Для волокна KEVLAR® 29 основным весом, используемым для расчета денье, является вес абсолютно сухой нити плюс 4,5 % влажности. Для волокна KEVLAR® 49 основной вес, используемый для расчета денье - абсолютно сухой с 0% влажности. |